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Abstract—An efficient procedure is developed for simulta-
neously characterizing the time-domain and frequency-domain
behavior of electromagnetic devices. The procedure works in
the complex-frequency plane—called thes-domain—and pro-
vides an analytical expression for the behavior of the device at
any frequency and for any transient excitation. This analytical
expression is obtained by first evaluating a reduced-order model
of the poles and zeros of the device. These poles and zeros are
then used to characterize the device in terms of rational poly-
nomials in the s-domain. Two different methods for evaluating
reduced-order models are presented. One is called asymptotic
waveform evaluation (AWE) and is combined with the finite-
element method; the other is called adaptive Lanzcos–Padé sweep
(ALPS) and is combined with the boundary-element method. The
resulting reduced-order models provide the frequency-domain
behavior of the device over a broad bandwidth. Using the Laplace
transform, these reduced-order models also provide the time-
domain behavior. Several numerical examples have been run
using commercial electronic design automation (EDA) software to
demonstrate that this solution procedure is a highly efficient and
accurate way to characterize the electromagnetic performance of
real-life devices.

Index Terms—Electromagnetic analysis, electromagnetic tran-
sient analysis, finite-element methods, Maxwell’s equations,
reduced-order systems.

I. INTRODUCTION

T IME-DOMAIN and frequency-domain procedures are
often used to characterize passive linear electromagnetic

devices. In a time-domain method, such as the finite-difference
time-domain (FDTD) or transmission-line matrix (TLM) algo-
rithms [1], Maxwell’s equations are discretized in both space
and time, and time stepping is used to compute the temporal
evolution of the field throughout the solution region. In a
frequency-domain method, such as the usual finite-element and
boundary-element methods, Maxwell’s equations are written in
the frequency domain and the fields in the solution region are
computed at a set frequency. In either case, problems must be
solved over and over again to determine the transient response
to a variety of different excitations, or to find the frequency
response over a broad bandwidth.

This paper presents a different approach. We develop pro-
cedures to compute a reduced-order model of the transfer
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function of the passive linear electromagnetic system. This
reduced-order model is derived in the complex-frequency
plane called the -domain. Since the response of a linear
system is determined by its transfer function, once the reduced-
order model is known, both the time-domain and frequency-
domain response of the system can be computed without the
need for additional field solution.

The transfer function of a linear system described by or-
dinary differential equations may be expressed as a rational
polynomial in terms of its poles and zeros. For a system
described by partial differential equations, such as electromag-
netics, the number of poles and zeros is infinite. Thus, to be
computationally tractable, we need to approximate this infinite
set by computing only the dominant poles and zeros of the
system. The resulting approximation to the transfer function is
called a reduced-order model. Two different procedures exist
in the literature for finding reduced-order models. One is called
asymptotic waveform evaluation (AWE) [2]–[5] and the other
is called the Pad́e via Lanczos (PVL) algorithm [6]. Both of
these procedures were originally applied to the solution of
electronic circuits; here we extend these procedures to make
them suitable for electromagnetic analysis.

There are several advantages to the-domain approach.
First, the electromagnetic transfer function is computed only
once. Since the system is linear, there is no need to compute
electromagnetic fields over and over again by stepping either
through time or frequency. Second,-domain solutions are
fast. Once the electromagnetic transfer function is computed,
frequency sweeps and transient analyzes take only seconds
or even fractions of a second. Third, the electromagnetic
analysis may be performed by using either differential- or
integral-equation methods. In this paper, we employ both the
finite-element and boundary-element methods to compute the
transfer function. Fourth,-domain solutions may be converted
into equivalent electrical circuits. These equivalent circuits can
be combined with external voltage and current sources and
the entire system modeled by using circuit simulators. Fifth,
it is very easy to use these reduced-order models in “what-if”
design variations. Since the electromagnetics are done once
and for all, it is possible to pass these detailed models on to
design groups working at the system level.

Early work on -domain methods in electromagnetics was
performed by Newman [7] and by Kottapalliet al. [8]. An
AWE-based fast-sweep method for integral equations was
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first presented in 1992 [9]. The first fast-sweep method that
combined AWE with the finite-element method was pre-
sented in 1993 [10]. A improved form of the PVL algorithm
called adaptive Lanzcos–Padé sweep (ALPS) for use with
integral equations was presented in 1996 [11]. AWE has
been employed in the finite-element-based electromagnetics
simulation package high-frequency structure simulator (HFSS)
to provide a fast frequency sweep capability since 1993.1

ALPS has been employed in the boundary-element-based
electromagnetics simulation package Maxwell Strata since
1996.2

This paper begins by introducing the two main approaches
to -domain analysis: AWE and PVL. We also develop im-
provements to these methods called complex frequency hop-
ping (CFH) and ALPS. We then derive reduced-order models
from the differential form of Maxwell’s equations combining
AWE with the finite-element method. This is followed by the
generation of reduced-order models from the integral form
of Maxwell’s equations, combining ALPS with the boundary-
element method. Finally, we develop procedures for obtaining
transient results from reduced-order models. These transient
results are obtained by creating circuit equivalents for the
reduced-order models and computing the transient response
via standard SPICE-like circuit simulators. The procedures are
illustrated by real-life examples.

II. AWE

AWE begins by applying the Laplace transform to the
linearized time-dependent Maxwell’s equations. This converts
Maxwell’s equations into a form dependent on the complex
frequency parameter . Using the Laplace transform and
numerical discretization, both the differential form or the
integral form of Maxwell’s equations can be written in the
form

(1)

Here, is a vector consisting of the desired solution
quantities, i.e., electric and magnetic fields with differential
methods, current densities, and charges with integral methods,

is a vector containing the contributions of applied sources,
and is the matrix generated by the discretization.

The impulse response of this linear system is defined as

(2)

where is the Laplace transform of the unit impulse (Dirac
delta) function and is a constant column vector. For a finite-
order system like a lumped circuit, this impulse response is a
rational function

(3)

A rational may also be written in the factored form

(4)

1HFSS User Manual, Hewlett-Packard Corporation, Santa Rosa, CA, and
Ansoft Corporation, Pittsburgh, PA, 1993.

2Maxwell Strata User Manual, Ansoft Corporation, Pittsburgh, PA, 1996.

where the and the are the poles and zeros of the system,
respectively.

We may, therefore, represent any component of the solution
vector by using a low-order rational function that is a
good approximation over a certain frequency band to the exact
(high-order) one. A well-known procedure for accomplishing
this task is the Pad́e approximation [12]. The first terms
of the Taylor-series expansion for (2) about the pointare
computed [2], [3], [5] and matched to the Taylor coefficients
of the reduced-order model. This results in

(5)

This can be solved by cross-multiplying the denominator
of the rational function and then equating terms with like
powers of . An approximation accurate over a broad
frequency band can often be determined by computing just
10–20 terms of the Taylor-series expansion. Once we have a
formula characterized in terms of just a few parametersand

, it is a simple matter to evaluate the frequency response by
substituting in a particular value of.

III. CFH

It is shown in [6] that the recursion relation in AWE is
equivalent to the power method for computing the eigenvectors
of the matrix . Since the power method converges most
strongly to the largest eigenvector of the matrix, this makes
is difficult to compute many terms in the sequence accurately.
Fortunately, in many cases, the number of polesrequired to
achieve a good approximation is very small. This is because
the first few moments corresponding to the derivatives of the
Taylor series contain the most information about the dominant
poles and zeros of the system near the center frequency.
Initially, as the number of terms in the Taylor series increases,
the bandwidth over which an accurate solution is obtained
also increases. The higher order terms are more difficult to
compute because of the nature of the power method and the
finite precision of the computer. Numerical simulations reveal
that increasing the number of poles beyond 10 or 12 does
not necessarily improve the accuracy of the approximation at
frequencies that are far away from the center frequency.

As a remedy to the above problem, a procedure called
CFH may be used [5]. In this procedure, the moments are
computed at multiple frequencies. A single rational function
is then derived, which is valid over a wider bandwidth by
combining the results obtained at the multiple frequencies.

To perform CFH, we seek a rational function in the form

(6)
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Assuming , (6) becomes

(7)

The th derivative of (7) at frequency is obtained as

(8)

This can be rewritten as

(9)

where

(10)

Equations (9) and (10) have been scaled appropriately to
improve numerical stability.

If the number of frequency points is N and the number
of derivatives at is , then a matrix equation for the
coefficients in (6) can be generated using (9) as long as

. A rational function providing
a continuous interpolation between several frequency points
is thus obtained. As a result, the bandwidth over which an
accurate approximation is obtained is much wider than a single
frequency Pad́e approximation. The spectral response can also
be much more complex.

A measure of the quality of the Pad´e approximation is
provided by the matrix residual

(11)

where and are the same as in (1). Computing this
matrix residual is very efficient because the matrix vector
multiplication involves the finite-element coefficient matrix,
which is very sparse. The residual computation consumes far
less central processing unit (CPU) time than is required for
matrix decomposition and provides a good indicator of the
accuracy of the solution. A large matrix residual indicates a
poor solution. The minimum residual always occurs at the
center frequency , where the residual is theoretically zero.

As the difference between and increases, the residual
also increases.

While the Pad́e approximation was performed above with
the -parameters of the electromagnetic circuit, a similar
procedure can be used with every element of the vector.
This means the electromagnetic-field behavior is also captured
by using the AWE process. At first, this would seem to be
a daunting task since the finite-element solution vector is
usually large. However, every element of the solution vector
has the same poles, while the zeros can be obtained by simple
summation. Thus, the difficulty is illusory and we can readily
plot complete electromagnetic-field data at any frequency from
an -domain solution. Indeed, the computer program HFSS
allows users to plot electromagnetic fields at any frequency
within the solution bandwidth from a single center frequency
solution.1

IV. ALPS

To avoid the numerical instabilities in AWE, Feldmann and
Freund have developed a procedure called PVL [6]. PVL
has the advantage of using the numerically robust Lanczos
algorithm to compute the eigenvalues of the system, rather than
the more problematic power method. It also has the benefit of
providing error estimates of the resulting poles and zeros.

The relationship between AWE and the eigenvalues of the
system is explained in [13]. Assuming that the frequency
dependence of the system matrix can be separated
as (where and are frequency
independent matrices), we can rewrite (2) as

(12)

where and . Diagonalize the
matrix as

(13)

where are the eigenvectors of and
is the matrix of eigenvalues .

Then (12) can be written as

(14)

This gives

(15)

where and are the th row in and the th column in
, respectively.

Equation (15) shows that the impulse response of a linear
system can be treated as an eigenvalue problem and that
the system poles are related to its eigenvalues. In theory,
determining the system response requires that all of the eigen-
values of the matrix be computed. However, in practice,
it is sufficient to compute only the eigenvalues in or near
the desired frequency range. This leads us to the Lanzcos
algorithm. Consider the generalized eigenvalue problem

(16)
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which has been derived from (13). The Lanczos algorithm
approximates the eigenvalues of a large-dimensional matrix
pair with a sequence of small-dimensional matrix
pairs , , where is a tridiagonal
matrix of dimension . The eigenvectors of this ever-growing
sequence are in a vector space called aKrylov subspace.
Details of this process are given in [14].

Although PVL is more stable than AWE, the Krylov vectors
thus generated eventually lose orthogonality and the method
stagnates. Sun has proposed a robust alternative to PVL
based on Arnoldi iteration as modified by Parlettet al. [15],
[16]. In the original Arnoldi process, the newly computed
Krylov vector must be kept orthogonal to all previous Krylov
vectors. This requirement is expensive and limits the method
to small problems. However, Parlett and Scott showed that
Krylov vectors lose their mutual orthogonality only when the
Lanczos process converges to an eigenvector of the system
[15]. By employing a measure to identify whether or not
a Krylov vector has converged to an eigenvector, newly
computed Krylov vectors only need to be kept orthogonal
to the set of converged eigenvectors. This is called selective
orthogonalization and is much more efficient than the original
approach. Compared to PVL, the new algorithm is not only
numerically stable, but is also more efficient since it takes
only one matrix–vector multiplication per Lanczos iteration
and it simultaneously computes the multioutput parameters for
a single input. Even when the computer runs out of storage
for the Krylov and other vectors, one still obtains a spectral
solution for a smaller frequency range. One can restart at
another frequency to obtain the remaining spectral solution.

In the above, we assumed that quadratic and higher order
terms do not contribute to the Taylor-series expansions (2).
This is not entirely true, although these terms may be neglected
if the frequency range is small enough. To obtain a wide-band
response, we employ an adaptive process. Suppose that we
are interested in the spectral-domain response in the band

. We first compute two different reduced-order
models using and as two different center frequen-
cies. We then compute the spectral response of the system
throughout the entire band using both reduced-
order models. If the two response are within an acceptable
error tolerance throughout , then the procedure
has converged. However, if the two responses differ by more
than the error tolerance, the frequency of maximum error
is noted. An additional reduced-order model is then computed
using as a new center frequency, and the error checking
process is repeated in the two new subintervals. This process
is repeated until the two reduced-order models bordering all
subintervals give the same spectral response to within the set
error tolerance. The several resulting reduced-order models are
then combined to form a single higher order reduced-order
model using the procedures described n Section III.

V. THE TRANSFINITE-ELEMENT METHOD

The time-dependent Maxwell’s equations in stationary
source-free regions are

(17)

(18)

where and are the time-domain electric and magnetic
fields, respectively and, , and are the material permeabil-
ity, permittivity, and conductivity, respectively. Equations (17)
and (18) are solved directly in procedures such as the FDTD
and TLM algorithms. Maxwell’s equations in the-domain
are obtained by taking the Laplace transform of (17) and (18),
assuming zero initial conditions, and rearranging terms

(19)

(20)

Here and are the Laplace transforms of and ,
respectively, and is an arbitrary complex frequency. To
increase computational efficiency, we eliminate eitheror
by combining (19) and (20) to give a vector-wave equation.
In the following, we generate the vector-wave equation in;
a similar procedure can be used to generate an equation in.
Taking the curl of (19) and using (20) gives

(21)

Setting and scaling both sides by yields

(22)

where is the wavenumber at frequency , and
and are the complex relative dielectric constants

(23)

(24)

Note that the electric field in (22) is a function of the complex
frequency relative to the center frequency .

The transfinite-element method uses a combination of finite
elements and mode matching to compute the electromagnetic
field [17]. Consider an arbitrary -port three-dimensional
microwave device enclosing a domain, bounded by perfect
conducting walls , and having -ports , ,
illustrated in Fig. 1 with a two-port.

In this case, the boundary conditions associated with (22)
for an arbitrary -port structure are written as follows:

on (25)

on (26)
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Fig. 1. Three-dimensional “black-box” fed by two triaxial cables.

on

(27)

In (26) and (27), is the incident electric field and is
the electric field mode of theth mode on the th port. In
the transfinite-element method, the incident field is taken to
be one of the eigenmodes, and all eigenmodes are normalized
to give unity Poynting vector

(28)

It can be shown that the coefficients are the same as the
elements of the -port generalized scattering matrix [17]. The
-parameters computed in the transfinite-element method are

variationally stationary and converge faster than the electric
field. This allows them to be computed very accurately.

Following the procedures in [17]–[19], we expand the
electric field as

(29)

where are tangential-vector finite elements. Applying
Galerkin’s method generates the-domain transfinite-element
matrix equation

(30)

Note that (30) provides the dependence on the complex
frequency explicitly. The matrices in (30) assume different
forms depending on the number of ports. For simplicity, we
present the expressions here for a two-port. Letstand for
the interior unknowns, stand for the unknowns on port
1, stand for unknowns on port 2, and contain the
tangential electric fields on ports 1 and 2, respectively,

stand for the transpose of , and are the input power
on ports 1 and 2, respectively, and are
a set of tangential-vector finite elements, whereis the total
number of vector basis functions used in approximating the
electric field. In this case, the matrices in (30) may be written
as

(31)

(32)

(33)

(34)

(35)

The solution vector contains the electric field and the
scattering parameters . For a two-port, it is

(36)

The right-hand sides in (30) all have the same structure.
For a two-port device, has two columns and is given by

(37)

where

(38)

Here the matrix is nonzero only in .
The domain of the structure may contain arbitrary conduc-

tors and materials. The tangential-vector finite elements ensure
the tangential continuity of the electric field and provide for
the continuity conditions between materials through the natural
boundary conditions in the variational principle. Impedance
boundary conditions may be set on lossy conductors, zero tan-
gential electric field is set on perfect conductors, and absorbing
boundary conditions are set on open radiating boundaries.

VI. THE MIXED-POTENTIAL INTEGRAL EQUATION

The following development is similar to that presented
in [8] and [24], so here we will be brief. To apply the
-domain method to integral equations, we write with the

mixed-potential integral equation in terms of the unknown
distribution of surface currents .

(39)
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Here, represents the dyadic Green’s function for the vector
potential, represents the scalar Green’s function, andis
the unit vector normal to the surface at the field observation
point . We assume that the only objects in the problem are
perfect electrical conductors, so that the sum of the incident
and scattered electric fields is normal to the surface.

Now approximate in (39) with Rao–Wilton–Glissen
(RWG) basis functions [27]

(40)

Applying Galerkin’s method provides

(41)

where

(42)

Although the matrices and depend on frequency through
the Green’s functions, we assume for the moment that they do
not. This allows us to make a change of variables and

to express (41) as

(43)

The ALPS procedure described in Section IV may then be
applied to find a piecewise rational-function approximation to
the frequency response over the band of interest.

VII. REDUCED-ORDER MODELS

Given a frequency response , it is desirable to create a
single rational-function model valid across a wide frequency
band. If this can be achieved, then it is a simple matter to
transform the response of the system back to the time domain.
This time-domain representation can be simulated efficiently in
SPICE-like programs using recursive convolution techniques
[29].

To compute such a model, we use rational-function inter-
polation, pole pruning, and least-squares fitting. The initial
“unconstrained” rational-function interpolation procedure [20]
is carried out in order to find a model that passes through
the computed data at a set of equally spaced points along the
line . To choose the interpolant’s order, we start with
a small number of interpolation points and then increase the
number of points until an acceptably accurate fit is achieved
between the interpolation points.

The unconstrained interpolation procedure may produce
nonphysical, unstable right-half-plane poles. In the pole-
pruning stage, these poles are eliminated from the model.
This makes the model stable, but introduces additional
approximation errors. To minimize these errors, a final least-
squares fitting procedure is used to adjust the residuesof
the remaining poles. Typically, we find that a maximum error
of about 1% is achievable with 5–30 poles.

In order to carry out simulation of complete digital or
microwave circuits, it is desirable to include both the elec-
tromagnetic effects of interconnects as well as the nonlinear
effects of transistors and diodes. Thus, we wish to incorporate
the reduced-order models we have derived within circuit
simulation packages such as SPICE [21], [22]. The main
challenge in doing this is translating between the scattering
parameter models of high-frequency electromagnetics and the
circuit models of SPICE.

In order to communicate with a circuit simulator, we must
develop a relationship between the modal fields and certain
“voltage” and “current” signals. In circuit theory, the voltages
are typically defined as potential differences between each sig-
nal conductor and a “ground” conductor. In electromagnetics,
it is more common to work with the power-scattering matrix

(44)

This relates the intensities of the incident and reflected wave-
guide modes at each port. We seek a similar relationship
defined in terms of signal voltagesand currents. The desired
relationship is called the pseudoscattering matrix

(45)

where the quantities and are the incident and reflected
pseudowave intensities, defined as

(46)

Here, is a diagonal matrix whose entries are the reference
impedances for each circuit port. These reference impedances
may be chosen arbitrarily; for simplicity, we demand that they
be positive real numbers.

Formally, a voltage is the integral of the transverse
electric field over an open path

(47)

If the transverse electric field can be represented in terms of
incident and reflected waveguide modes with intensities
and , respectively, we then have

Therefore, in terms of modal intensities, the voltage
becomes

where is an integral of the modal
electric field.

Collecting all of the voltages and wave intensities together
as vectors, the relationship becomes

(48)

where is a square matrix ( for the structure
in Fig. 1) defining the transformation from mode intensities to
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Fig. 2. A circuit interpretation of the current scattering relationship in (53).

port voltages. We need another such transformation to compute
the port currents. The form of the relationship we seek is

(49)

where is a matrix relating modal intensities
to currents. By demanding energy conservation between the
circuit and electromagnetic models, it can be shown that

(50)

where is a matrix whose entries are the cross-power
terms between the different waveguide modes

(51)

The currents and can now be determined from the modal
intensities and . By rearranging (46) and solving for
in terms of , we can derive the desired pseudoscattering
relation

(52)

where .

VIII. I MPLEMENTATION OF REDUCED-ORDER

MODELS IN CIRCUIT SIMULATION

Using (46a), we can rewrite the pseudoscattering relation-
ship in terms of voltages and currents

where

(53)

We introduce as well as the current-scattering
matrix . The advantage of (53) is that it lends itself to direct
implementation in a circuit simulator. An equivalent circuit
model for this relationship is shown in Fig. 2. The overall
procedure for producing the equivalent circuit is summarized
as follows.

1) Run an electromagnetic analysis on the structure of
interest, using fast-sweep methods to find the modal
scattering-parameter matrix over a broad frequency
band.

Fig. 3. A microstrip T-junction.

Fig. 4. Scattering parameters for the T-junction of Fig. 3. Solid line: cal-
culated using AWE-based fast frequency sweep. Diamonds: measured results
from [22].

2) Determine the transformation matrix from the modal
field patterns at the ports.

3) Compute the pseudoscattering matrix and then con-
vert it into a current-scattering matrix .

4) Perform reduced-order modeling on the entries of the
current-scattering matrix.

5) Write out the reduced-order models as frequency-
dependent controlled sources in the form of a circuit
deck for SPICE [21].

IX. NUMERICAL RESULTS

Consider first the microstrip T-junction of [23]. The sub-
strate is 0.0254-cm-thick and has a relative dielectric constant
of 9.9. The microstrip is 0.023-cm-wide and is assumed to
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Fig. 5. A three-pole microstrip filter design.

Fig. 6. Comparison of scattering parameters for the filter of Fig. 5. Solid
lines: AWE sweep results. Boxes: measured data.

have zero thickness. The microstrip stub is 0.051-cm-wide
and 0.153-cm-long. The geometry and computed numerical
results are shown in Figs. 3 and 4. As shown in Fig. 4, the
agreement between this theory (solid lines) and the measured
results (markers) obtained by Gianniniet al. [23, Fig. 17(a)]
is very good. The -domain method performs a single-matrix
LU decomposition at 16 GHz and 16 additional forward and
backward substitutions (i.e., eight poles are used in the Padé
approximation) and accurately predicts the spectral response
over the 3–30-GHz bandwidth. In contrast, with the frequency-
domain method, one would have to solve the matrix equation
at many discrete frequencies to obtain a similar frequency
response curve. Capturing the resonant frequency near 18 GHz
is not trivial with the frequency-domain method if one does

Fig. 7. Impact of the number of polesq in the AWE approximation on the
return loss for the filter of Fig. 5.

Fig. 8. Impact of the number of polesq on the transmission coefficient for
the filter of Fig. 5.

not know the location of the resonance ahead of time. In
contrast, this resonance is accurately and easily computed by
the -domain method.

To illustrate the efficiency of the-domain method, consider
the microstrip low-pass filter, shown in Fig. 5. The dimensions
of the filter are: mil, mil,
mil, mil, mil, and mil.
The dielectric substrate has a relative dielectric constant of
9.6- and is 25-mil-thick. Fig. 6 compares this solution with
measured results. Again, the agreement is excellent. Even
though the spectral response of this filter is relatively complex,
a single matrix solution at 12 GHz and 10 poles (20 additional
forward/backward substitutions) are sufficient to obtain very
accurate results over the wide band from 2 to 20 GHz. The
matrix size used in this example was 63 214. The CPU time3

3These simulations were performed on an HP 9000/720 workstation with
64-MB RAM.
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Fig. 9. A rectangular waveguide with a ridge discontinuity.

Fig. 10. The scattering parameters for the waveguide discontinuity of Fig. 9.
The figure compares the AWE-based fast frequency sweep with measured
data from [23].

Fig. 11. Impact of the number of polesq in the AWE approximation on the
transmission coefficient for the waveguide of Fig. 9. Also shown (x) are the
“discrete” frequency sweep results.

Fig. 12. Impact of the number of polesq in the AWE approximation on the
return loss for the waveguide of Fig. 9. Also shown (x) are the “discrete”
frequency sweep results.

Fig. 13. Scattering parameters for the cross-iris problem of Fig. 13. AWE
fast-sweep results are compared with HFSS discrete sweep results. Also shown
is the matrix residual versus frequency.

required to perform a singleLU decomposition was 107.5
min. However, it requires only 7.4 CPU min to perform a
single forward/backward substitution. Thus,LU decomposition
takes 14 times more CPU time than forward and backward
substitutions for this structure. Including the overhead of
setting up this problem, the total CPU time for a single
frequency point is min. In contrast,
if one were to solve the problem at 20 discrete frequencies,
the total CPU time would be min. Thus,
the -domain method is approximately nine times faster and
provides an analytic function for the spectral response versus
the 20 discrete points obtained in the traditional method. With
a spectral response as complicated as the one shown in Fig. 6,
this analytical function is much more suitable for use in a
microwave circuit simulation than are the 20 discrete values
that must often be interpolated.
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Fig. 14. A rectangular waveguide with two cross irises.

Figs. 7 and 8 illustrate the rate of convergence of the
scattering parameters in terms of the number of poles used
in the Pad´e approximation. The spectral response between 8
and 18 GHz is correctly captured with as few as five poles.
This indicates that the dominant poles that produces the peaks
and valleys in the response are already contained in the five-
pole approximation. Additional poles improve the accuracy of
the solutions at frequencies far away from the center frequency
about the Taylor-series expansion point.

As a third example, consider the rectangular waveguide
discontinuity, shown in Fig. 9. The waveguide is 19.05-mm-
wide and 9.524-mm-high. The rectangular iris is centered with
dimensions mm, mm, and
mm. Fig. 10 compares the numerical scattering parameters
with measured results obtained by Mansouret al. [24, Fig. 6].
Figs. 11 and 12 again demonstrate the rate of convergence in
terms of the number of poles used in the Padé approximations.
With the center frequency at 13.0 GHz and five poles in the
Pad́e approximation, the-parameters are obtained accurately
within the 10–15-GHz bandwidth. Adding poles to bring
the reduced-order model up to ten poles produces accurate
solutions between 8–22 GHz. The latter set of results is con-
firmed by using the Ansoft (HFSS) to perform a conventional
“discrete” frequency sweep.

The above three examples clearly demonstrate the power
and the limitations of the-domain method. It is evident that
the solution is most accurate over a limited bandwidth. The
range of this bandwidth depends on the number poles used
in the model and on the complexity of the spectral response.
Since the Pad́e approximation only catches dominant poles
and zeros, the accuracy bandwidth decreases with increasing
complexity in the spectral response. the global matrix-residue
error criterion in (11) indicates the range of validity of the
Pad́e approximation. Fig. 13 presents the matrix residue plot
for the rectangular waveguide cross-iris problem shown in
Fig. 14. For this example, the minimum residue is located at
the center frequency of 15 GHz where only roundoff error

Fig. 15. Effect of the center frequency on the fast-sweep approximation for
the waveguide cross-iris problem of Fig. 13.

Fig. 16. An E-plane slot-coupled T-junction between two rectangular
waveguides.

occurs. Although the matrix residue is often less than 10or
120 dB when it is directly decomposed, it is observed that

this method provides accurate scattering parameters for a large
number of practical structure even when the matrix residue is
as large as 20 dB. This is clearly illustrated in Fig. 13 where
ten poles are used in the Padé approximation.

The structure in Fig. 14 has a resonance around 15 GHz.
To demonstrate the robustness of the method, the problem is
solved at several center frequencies. Fig. 13 shows a typical
matrix residue versus frequency plot for the case when the
matrix is factored using ten poles at the center frequency of
15 GHz. Fig. 15 shows that the center frequency has almost
no effect on the spectral response even though the rational
functions representing the system are different. This is an
important property of the -domain approach: one is not
required to specify the solution frequency. Rather, one must
satisfy the loose requirement that the center frequency should
be in the bandwidth of interest.
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Fig. 17. Computed fast-sweep results for the structure of Fig. 16 compared
with measured results in [24].

Fig. 18. Computed fast-sweep results for the structure of Fig. 16 compared
with conventional discrete frequency sweep results from HFSS.

The last finite-element example is the-plane slot coupled
T-junction in a rectangular waveguide, as shown in Fig. 16.
This T-junction exhibits several sharp resonances between 12
and 18 GHz, indicating the existence of several dominant
poles in this frequency range. Applying the-domain solution
procedure at a single frequency range does not capture all of
the resonances accurately. Thus, we employ CFH to combine
the Taylor-series expansions at multiple frequencies to produce
a single rational function for the entire bandwidth, as given in
(6). We solve the T-junction in Fig. 16 for ten derivatives
at each of the three different frequencies at 13.2, 15.0, and
17.2 GHz. The resulting rational function has 15 poles. Fig. 17
compares the computed-parameter spectra response with the
measured results, as given by Sieverdinget al. [25, Fig. 6(b)].
The agreement between computed and measured results is ex-
cellent. Also shown in Fig. 18 are discrete frequency solutions
obtained by solving the problem at 21 discrete frequencies.

Fig. 19. A low-pass microstrip filter using grounded vias.

Fig. 20. Comparison of ALPS results with the conventional discrete fre-
quency sweep in Strata.

While this discrete solution is accurate at the 21 computed
frequencies, the-domain method clearly produces a far better
and more complete result.

The next example demonstrates the use of fast sweep tech-
niques for an integral-equation solver. The problem is the low-
pass filter structure, shown in Fig. 19. This was analyzed using
Strata, a full-wave boundary-element code with ALPS-based
fast-frequency sweep. The results of the fast sweep are com-
pared with a discrete frequency sweep (X’s), shown in Fig. 20.
The agreement is quite good across the entire frequency band.

Another low-pass filter is shown in Fig. 21(a). The com-
puted scattering parameters were modeled with rational func-
tions of 16–18 poles. A comparison of the sweep results with
the reduced-order model is shown in Fig. 21(b).

A two-port equivalent circuit model for the structure
was then generated; this was connected to a nonlinear
metal–oxide–semiconductor (MOS) inverter driver. The
transmitted and reflected pulses from a transient simulation
are shown in Fig. 22.
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(a)

(b)

Fig. 21. (a) Chebyshev third-order low-pass filter structure. (b) Comparison
of Strata’s frequency response (computed by fast sweep) and the reduced-order
model.

The second example [Fig. 23(a)] is taken from printed
circuit-board design. It consists of two symmetrical wires
used in a differential signaling scheme; the wires make a 90
bend, which includes a transition from an-routing layer to
a -layer through a pair of vias. There are ground planes
above and below the structure. We wish to investigate the
crosstalk between the undesired common mode (even mode)
of propagation and the signal-carrying differential mode (odd
mode). The structure was analyzed by Ansoft HFSS, using
both a standard discrete frequency sweep and fast frequency-
sweep techniques; the modal-parameters were converted into
circuit-based parameters for even and odd modes and then
fitted by reduced-order models. The point-by-point frequency
sweep (100 points) took 2.5 h of CPU time on a DEC Alpha
3000/800 workstation, while the fast frequency sweep took
less than 0.2 CPU h. Plots of the near- and far-end crosstalk
magnitudes are shown as a function of frequency in Fig. 23(b).
In addition, we have computed the time-domain crosstalk
waveforms for the structure, assuming that input pulses with
0.1-ns rise times drive the even and odd modes. Plots of
these waveforms are given in Fig. 24(a). This information
could be used to create “design rules” for the maximum

(a)

(b)

Fig. 22. Transient simulation results from HSPICE analysis of the combined
MOS driver and reduced-order model.

number of right-angle bends allowed for a certain maximum
crosstalk.

Also shown [Fig. 24(b)] are the signal waveforms at the
near and far ends. Notice that the waveforms predict a delay
of approximately 0.1 ns from input to output. This is consistent
with the relative dielectric constant ( , a velocity of

m/s) and the total distance traveled (about 16 mm).

X. CONCLUSIONS

Fast frequency-sweep methods provide a powerful tool
for characterizing the electromagnetic behavior of structures
that are intended to operate over a broad frequency band, or
whose time-domain characteristics are important. Reduced-
order models can be generated with a computational
cost, which is small compared to the field analysis at
a single frequency. In this paper, we have demonstrated
how fast sweep techniques may be applied to both finite-
element and integral-equation formulations of the full-wave
electromagnetic-analysis problem.

For the finite-element approach, the transfinite-element for-
mulation of Maxwell’s equations was coupled with AWE to
compute the spectral response efficiently. Speed improvements
of ten times or more over the traditional approach were
obtained when analyzing typical microwave structures. In
many cases, the spectral response over a wide bandwidth
was accurately obtained by solving the problem at a single
frequency and performing the AWE procedure. The solution is
typically most accurate near the center frequency of the series
expansion. However, it becomes less accurate as the frequency
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(a)

(b)

Fig. 23. (a) Three-dimensional printed circuit-board structure including vias
and 90� bend. (b) Simulated far-end crosstalk response between odd and
even modes.

departs from the expansion point. The range of validity is
problem dependent. If the frequency response of the structure
is required over a broad band, additional solutions at different
frequencies may be performed and then combined together
using CFH.

Alternatively, one may use the ALPS procedure, which
adaptively solves at the frequency points of maximum error
using the Lanczos algorithm with selective orthogonalization.
The procedure is highly reliable and efficient. Typically, it
needs fewer than five adaptive solutions. As shown in our
test cases, excellent agreement is obtained between ALPS
solutions and direct solutions. The ALPS procedure also
makes it possible to apply fast sweep techniques to integral-
equation formulations of the electromagnetics problem. For
these formulations, the complicated frequency dependence of
the matrices would prevent the use of the AWE of Lanczos
procedures.

We have also explored the problems of efficient time-
domain and mixed linear/nonlinear simulation. Reduced-order
circuit models were derived from the fast sweep results;
these allowed us to characterize the time-domain behavior of
electromagnetic structures in the presence of nonlinear loading.
Since the simulation of the nonlinear problem is carried out
in a circuit-level tool such as SPICE, the analysis is orders of

(a)

(b)

Fig. 24. (a) Time-domain crosstalk waveforms at the input (near) and output
(far) ports. (b) Time-domain differential-signal waveforms at the near and far
ends.

magnitude faster than can be achieved in a field simulator. This
permits the user to change the nonlinear-device characteristics
and resimulate without long delays.
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