IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 9, SEPTEMBER 1998 1277

S-Domain Methods for Simultaneous
Time and Frequency Characterization
of Electromagnetic Devices
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Abstract—An efficient procedure is developed for simulta- function of the passive linear electromagnetic system. This
neously characterizing the time-domain and frequency-domain reduced-order model is derived in the complex-frequency
behavior of electromagnetic devices. The procedure works in plane called thes-domain. Since the response of a linear

the complex-frequency plane—called thes-domain—and pro- . . . i
vides an analytical expression for the behavior of the device at system is determined by its transfer function, once the reduced-

any frequency and for any transient excitation. This analytical order model is known, both the time-domain and frequency-
expression is obtained by first evaluating a reduced-order model domain response of the system can be computed without the
of the poles and zeros of the device. These poles and zeros ar¢eed for additional field solution.

then used to characterize the device in terms of rational poly- The transfer function of a linear system described by or-

nomials in the s-domain. Two different methods for evaluating . . . . .
reduced-order models are presented. One is called asymptotic dinary differential equations may be expressed as a rational

waveform evaluation (AWE) and is combined with the finite- Polynomial in terms of its poles and zeros. For a system
element method; the other is called adaptive Lanzcos-Padsweep described by partial differential equations, such as electromag-
(ALPS) and is combined with the boundary-element method. The netics, the number of poles and zeros is infinite. Thus, to be
resulting reduced-order models provide the frequency-domain ¢, iationally tractable, we need to approximate this infinite

behavior of the device over a broad bandwidth. Using the Laplace ; .
transform, these reduced-order models also provide the time- set by computing only the dominant poles and zeros of the

domain behavior. Several numerical examples have been run System. The resulting approximation to the transfer function is
using commercial electronic design automation (EDA) software to called a reduced-order model. Two different procedures exist

demonstrate that this solution procedure is a highly efficient and jn the literature for finding reduced-order models. One is called
accurate way to characterize the electromagnetic performance of asymptotic waveform evaluation (AWE) [2]-[5] and the other
real-life devices. . ymp S .
_ _ _ is called the Pa@l via Lanczos (PVL) algorithm [6]. Both of
_Index Terms—Electromagnetic analysis, electromagnetic tran- these procedures were originally applied to the solution of
sient analysis, finite-element methods, Maxwell's equations, oo yronic circuits; here we extend these procedures to make
reduced-order systems. . . .
them suitable for electromagnetic analysis.
There are several advantages to thdomain approach.
I. INTRODUCTION First, the electromagnetic transfer function is computed only

IME-DOMAIN and frequency-domain procedures ar&nce. Since the system is linear, there is no need to compute
T often used to characterize passive linear electromagnet|gctromagnetic fields over and over again by stepping either
devices. In a time-domain method, such as the finite-differenggough time or frequency. Seconekdomain solutions are
time-domain (FDTD) or transmission-line matrix (TLM) a|go_fast. Once the electromagnetic transfer function is computed,
rithms [1], Maxwell’s equations are discretized in both spadéequency sweeps and transient analyzes take only seconds
and time, and time stepping is used to compute the tempoP&l €ven fractions of a second. Third, the electromagnetic
evolution of the field throughout the solution region. In @&nalysis may be performed by using either differential- or
frequency-domain method, such as the usual finite-element dniggral-equation methods. In this paper, we employ both the
boundary-element methods, Maxwell's equations are writtenfifite-element and boundary-element methods to compute the
the frequency domain and the fields in the solution region df@nsfer function. Fourths-domain solutions may be converted
computed at a set frequency. In either case, problems must§€ equivalent electrical circuits. These equivalent circuits can
solved over and over again to determine the transient respoRgecombined with external voltage and current sources and
to a variety of different excitations, or to find the frequencihe entire system modeled by using circuit simulators. Fifth,
response over a broad bandwidth. it is very easy to use these reduced-order models in “what-if”

This paper presents a different approach. We develop pgsign variations. Since the electromagnetics are done once

cedures to compute a reduced-order model of the trans@®d for all, it is possible to pass these detailed models on to
design groups working at the system level.
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first presented in 1992 [9]. The first fast-sweep method thahere thep; and thez; are the poles and zeros of the system,
combined AWE with the finite-element method was praespectively.

sented in 1993 [10]. A improved form of the PVL algorithm We may, therefore, represent any component of the solution
called adaptive Lanzcos—Radweep (ALPS) for use with vector x; by using a low-order rational function that is a
integral equations was presented in 1996 [11]. AWE ha®od approximation over a certain frequency band to the exact
been employed in the finite-element-based electromagneffbigh-order) one. A well-known procedure for accomplishing
simulation package high-frequency structure simulator (HFS®)s task is the Padapproximation [12]. The fir&g+1 terms

to provide a fast frequency sweep capability since 1993%f the Taylor-series expansion for (2) about the paiptare
ALPS has been employed in the boundary-element-bassmputed [2], [3], [5] and matched to the Taylor coefficients
electromagnetics simulation package Maxwell Strata sinoéthe reduced-order model. This results in

19962

This paper begins by introducing the two main approaches 2q
to s-domain analysis: AWE and PVL. We also develop im- H(s)= ) (s—s0)" zhn
provements to these methods called complex frequency hop- n=0
ping (CFH) and ALPS. We then derive reduced-order models _ Pals=s0)1+---+Bi(s —s0) + o (5)
from the differential form of Maxwell’s equations combining ag(s — o)1+ -+ a1(s — so) +ap

AWE with the finite-element method. This is followed by the

generation of reduced-order models from the integral form

of Maxwell's equations, combining ALPS with the boundaryThis can be solved by cross-multiplying the denominator
element method. Finally, we develop procedures for obtaini® the rational function and then equating terms with like
transient results from reduced-order models. These transieawers of(s — so). An approximation accurate over a broad
results are obtained by creating circuit equivalents for tifEequency band can often be determined by computing just
reduced-order models and computing the transient respoA8e-20 terms of the Taylor-series expansion. Once we have a

via standard SPICE-like circuit simulators. The procedures d@¥mula characterized in terms of just a few parameterand
illustrated by real-life examples. b;, it is a simple matter to evaluate the frequency response by
substituting in a particular value of

Il. AWE

AWE begins by applying the Laplace transform to the . CFH
linearized time-dependent Maxwell's equations. This converts _ ) L .
Maxwell’s equations into a form dependent on the complex !t is shown in [6] that the recursion relation in AWE is
frequency parametes. Using the Laplace transform andequalenttc?the power method for computing the eigenvectors
numerical discretization, both the differential form or th@f the matrix A. Since the power method converges most

integral form of Maxwell's equations can be written in th&trongly to the largest eigenvector of the matdxthis makes
form is difficult to compute many terms in the sequence accurately.

Fortunately, in many cases, the number of paelesquired to
A(s)z(s) = b(s). (1) achieve a good approximation is very small. This is because
Ighe first few moments corresponding to the derivatives of the

Here, z(s) is a vector consisting of the desired solutioT | i tain th Linf i bout the dominant
guantities, i.e., electric and magnetic fields with differentia|®Y'O" S€ries contain the most information about the dominan

methods, current densities, and charges with integral metho'ﬂ‘%Ies and zeros of the system near the center frequegcy

b(s) is a vector containing the contributions of applied sourcel itially, as the number of terms in the Taylor series increases,

and A(s) is the matrix generated by the discretization. tle pandmdth 0_;_’? Vr\]/.h'ﬁh andaccurate solution ISdelfi?tallned
The impulse response of this linear system is defined as®°° Ncreases. The higher order terms are more difficult to
compute because of the nature of the power method and the

H(s) = [A(s)] T bu(s) (2) finite precision of the computer. Numerical simulations reveal
. - . that increasing the number of poles beyond 10 or 12 does
whereu(s) is the Laplace transform of the unit impulse (D'ra%ot necessarily improve the accuracy of the approximation at

delta) function and is a constant column vector. For a finite, .
frequencies that are far away from the center frequency.

oro_ler system_hke a lumped circuit, this impulse response is s a remedy to the above problem, a procedure called
rational function :
) CFH may be used [5]. In this procedure, the moments are
H(s) = PotPrs+fas” +- -+ fys? (3) Computed at multiple frequencies. A single rational function
g+ a5+ aas? + -+ st is then derived, which is valid over a wider bandwidth by
combining the results obtained at the multiple frequencies.
To perform CFH, we seek a rational function in the form

A rational H(s) may also be written in the factored form

H(S — /3(1(3 Z(I)(S 2q 1) (3 Zl) (4) ‘
(s —pg)(s —pg—1) -~ (s — p1) a—1; [ 4 . .
_ . > imobi [70(3 - JWO)}
1HFSS User ManualHewlett-Packard Corporation, Santa Rosa, CA, and H(s) = T (6)
Ansoft Corporation, Pittsburgh, PA, 1993. o L(s _ jwo)}
2Maxwell Strata User ManualAnsoft Corporation, Pittsburgh, PA, 1996. =07 | wo
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Assumingao = 1, (6) becomes As the difference betweew and wg increases, the residual
o1 D ~also increases.
5 J N A J N While the Paé approximation was performed above with
H = bz — — ] — ZIT[ — — ] . . . . L
(=) ; [wo(s ‘MO)} ;a (S)[wo(s ‘lwo)} the s-parameters of the electromagnetic circuit, a similar
@) procedure can be used with every element of the vectoy.
This means the electromagnetic-field behavior is also captured

The kth derivative of (7) at frequency = jw; is obtained as by using the AWE process. At first, this would seem to be
a daunting task since the finite-element solution vector is

A ! b,i! j kr_q ik usually large. However, every element of the solution vector
H(jwj) = Zm <w_0> L,_O(wj - WO)} has the same poles, while the zeros can be obtained by simple
i=k o summation. Thus, the difficulty is illusory and we can readily
a  min(ik) k! i\" plot complete electromagnetic-field data at any frequency from
B Z“i Z nl(i —n)!(k—n)! <w_0> an s-domain solution. Indeed, the computer program HFSS
=1 n=0 - allows users to plot electromagnetic fields at any frequency
_ﬁ(k—n)(jwj) [—_1(% _ wo)} ’ n' ®) Within thle solution bandwidth from a single center frequency
wo solution:
This can be rewritten as IV. ALPS
2 a—1 | ik To avoid the numerical instabilities in AWE, Feldmann and
<ﬂ) F(k)(jwj) :ZL[_—l(wg’ _UJO):| Freund have developed a procedure called PVL [6]. PVL
Wy ‘ ik (& = k)R L wo has the advantage of using the numerically robust Lanczos
¢  min(i, k) " E—n algorithm to compute the eigenvalues of the system, rather than
_ Zai Z % <ﬂ) the more problematic power method. It also has the benefit of
= = i) \wy providing error estimates of the resulting poles and zeros.
k), i i-n The relationship between AWE and the eigenvalues of the
-H (ij)[u‘)—(wj —wo)} (9) system is explained in [13]. Assuming that the frequency
0 dependence of the system matrik(s) can be separated
as A(s) = Ao + sA; (where Ay and A; are frequency
where independent matrices), we can rewrite (2) as
) _ <& ) "H <’“>k(;7’wj) _ (10) H(s) = (I — sM)~'r(s) (12)
J !

where M = —AJ'A; andr(s) = Ay 'bu(s). Diagonalize the
Equations (9) and (10) have been scaled appropriately dfatrix A/ as
improve numerical stability. .
If the number of frequency points is N and the number M = xAx (13)
of derivatives atw, is K, then a matrix equation for theWhere x are the eigenvectors ofM and A —

coefficients in (6) can be generated using (9) as long gs . . .

Zf;l (K; —1) > (2¢ + 1). A rational function providing ?ﬁgrg)\(liz)fé;ﬁ ’é‘ gravrilfenthai matrix of eigenvaluesi;.
a continuous interpolation between several frequency points
is thus obtained. As a result, the bandwidth over which an H(s) = x(I —sA) Iy tr(s). (14)
accurate approximation is obtained is much wider than a single

frequency Pa@l approximation. The spectral response can alddis gives

be much more complex. N
A measure of the quality of the Padapproximation is H(s) = Z &i - pi (15)
provided by the matrix residual —~1-sh
Frror(s) = | A(s)z(s) — b(s)| (11) Where&; and p; are theith row in x and theith column in

|16(s)]] x~tr(s), respectively.

_ . . Equation (15) shows that the impulse response of a linear
where A(s) and b(s) are the same as in (1). Computing thigy ctem can be treated as an eigenvalue problem and that
matrix residual is very efficient because the matrix vectgfq system poles are related to its eigenvalues. In theory,
multiplication involves the finite-element coefficient matrixdetermining the system response requires that all of the eigen-
which is very sparse. The residual computation consumes Qc/%rlues of the matrix}/ be computed. However, in practice,
less central processing unit (CPU) time than is required fric o ficient to compute only the eigenvalues in or near
matrix decomposition and provides a good indicator of thgg gesired frequency range. This leads us to the Lanzcos

accuracy Qf the solut|p|j. A Iarge.matrlx residual indicates aﬁgorithm. Consider the generalized eigenvalue problem
poor solution. The minimum residual always occurs at the

center frequencyy, where the residual is theoretically zero. Ay = —AoxA (16)
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which has been derived from (13). The Lanczos algorithm VxH= EEEJFUE (18)
approximates the eigenvalues of a large-dimensional matrix
pair (Ag, A1) with a sequence of small-dimensional matrixvhere E and H are the time-domain electric and magnetic
pairs (I, 1), k = 2,3,---,N, whereT}, is a tridiagonal fields, respectively and, ¢, ando are the material permeabil-
matrix of dimensionk. The eigenvectors of this ever-growingity, permittivity, and conductivity, respectively. Equations (17)
sequence are in a vector space calledrglov subspace and (18) are solved directly in procedures such as the FDTD
Details of this process are given in [14]. and TLM algorithms. Maxwell's equations in thedomain
Although PVL is more stable than AWE, the Krylov vectorare obtained by taking the Laplace transform of (17) and (18),
thus generated eventually lose orthogonality and the methaskuming zero initial conditions, and rearranging terms
stagnates. Sun has proposed a robust alternative to PVL
based on Arnoldi iteration as modified by Parlettal. [15], oo 7 5
[16]. In the original Arnoldi process, the newly computed VX EB=—pls = so)H = psoHl (19)
Krylov vector must be kept orthogonal to all previous Krylov +
vectors. This requirement is expensive and limits the method
to small problems. However, Parlett and Scott showed thdére £ and H are the Laplace transforms & and H,
Krylov vectors lose their mutual orthogonality only when theespectively, andsy is an arbitrary complex frequency To
Lanczos process converges to an eigenvector of the sysi@grease computational efficiency, we eliminate eitBeor H
[15]. By employing a measure to identify whether or noby combining (19) and (20) to give a vector-wave equatlon.
a Krylov vector has converged to an eigenvector, newly the following, we generate the vector-wave equauorE:n
computed Krylov vectors only need to be kept orthogonalsimilar procedure can be used to generate an equatifin in
to the set of converged eigenvectors. This is called selectiveking the curl of (19) and using (20) gives
orthogonalization and is much more efficient than the original
approach. Compared to PVL, the new algorithm is not only 4 < )
€+

V x H =e(s — s0)E + (eso + 0)E (20)

—

numerically stable, but is also more efficient since it takeg X —V X E+ S0 E

only one matrix—vector multiplication per Lanczos iteration R -

and it simultaneously computes the multioutput parameters for = —¢e(s — 50)"E — (s — 50)(2es0 + 0)E. (21)
a single input. Even when the computer runs out of storage

for the Krylov and other vectors, one still obtains a spectr&ettingsg = jwo and scaling both sides by, yields
solution for a smaller frequency range. One can restart at

another frequency to obtain the remaining spectral solution. 1
In the above, we assumed that quadratic and higher order® P —V x E+kje
terms do not contribute to the Taylor-series expansions (2). " 1 .
This is not entirely true, although these terms may be neglected = ——[e-(s — jwo)® + 2jwoey (s — jwo)lk3E  (22)

if the frequency range is small enough. To obtain a wide-band “0

response, we employ an adaptive process. Suppose that er
are interested in the spectral-domain response in the ban
[fmin, fmax]- We first compute two different reduced- order’
models usingf,,;x and f..x as two different center frequen-

reko = woogo IS the wavenumber at frequency, and
ande! are the complex relative dielectric constants

a

cies. We then compute the spectral response of the system e =g —3j (23)

throughout the entire bandin, fumax] Using both reduced- w0§0

order models. If the two response are within an acceptable el =g ‘2 . (24)
WoEo

error tolerance throughoUtfy,in, fmax|, then the procedure
has converged. However, if the two responses differ by more o _ _
than the error tolerance, the frequency of maximum efﬁg& Note that the electric field in (22) is a function of the CompleX
is noted. An additional reduced-order model is then computé§duencys relative to the center frequenay,. N
using fmax as @ New center frequency, and the error checkingThe transfinite-element method uses a combination of finite
process is repeated in the two new subintervals. This proc€sments and mode matching to compute the electromagnetic
is repeated until the two reduced-order models bordering H8ld [17]. Consider an arbitraryV-port three-dimensional
subintervals give the same spectral response to within the gégrowave device enclosing a domaih bounded by perfect
error tolerance. The several resulting reduced-order models &@gducting wall$2, and havingV-portsl';, i = 1, 2,---, N,

then combined to form a single higher order reduced-ordépstrated in Fig. 1 with a two-port.- _ _

model using the procedures described n Section III. In this case, the boundary conditions associated with (22)

for an arbitrary/N-port structure are written as follows:
V. THE TRANSFINITE-ELEMENT METHOD

The time-dependent Maxwell's equations in stationary » « F— g on 80 (25)
source-free regions are M,
vx Bl @y E=EmeYsiE o 20

_Nat j=1
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stand for the transpose &%, ¥, and W, are the input power

on ports 1 and 2, respectively, afd,;, ¢ =1, 2,---, N} are

a set of tangential-vector finite elements, whaieis the total

= number of vector basis functions used in approximating the
electric field. In this case, the matrices in (30) may be written

— ) s

4 Mj, M Py Mjp, Py
A= |PEM}, PTME . Pi PEM [ P | (31)
_PQTMl?‘ll P2TM122F1P1 PQTMl?TQPQ

(0 0 0
=10 ¥; 0 (32)

Fig. 1. Three-dimensional “black-box” fed by two triaxial cables. _0 0 W

1

ML =(V7% | =V x7 )= 33
M i <V’Y INTVX%> (3 175 (33)

E=N"6§%jg* onI, k=12, N, k=#i. 3| e
Z_:l Je; # MZQJ _ —2/68 (Vi |.5r%> (34)

" 27 an
@D = -2k | &), (35)

In (26) and (27),E™¢ is the incident electric field and’ is  The solution vector:(s) contains the electric field and the
the electric field mode of thgth mode on thekth port. In scattering paramete&??_ For a two-port, it is
the transfinite-element method, the incident field is taken to ’

be one of the eigenmodes, and all eigenmodes are normalized E} E2
to give unity Poynting vector z(s) = |s11 s21 |- (36)
S12 S22
fg (€5 x hj) - Aidl’ = 1. (28) " The right-hand sides® in (30) all have the same structure.

For a two-port deviceh® has two columns and is given by
It can be shown that the coefficierﬁ§ are the same as the

elements of theV-port generalized scattering matrix [17]. The b = [b b (37)
s-parameters computed in the transfinite-element method are
variationally stationary and converge faster than the electMéere ‘
field. This allows them to be computed very accurately. ‘ Mip, P

Following the procedures in [17]-[19], we expand the b= | PIM{ p Pv—ni |- (38)
electric field as PEMY, v, P = Vo)

L Qe Here the matrixy is nonzero only inb*.
E= ZEJW (29) The domairt of the structure may contain arbitrary conduc-
g=1 tors and materials. The tangential-vector finite elements ensure
where 5; are tangential-vector finite elements. Applyinghe tangential continuity of the electric field and provide for
Galerkin's method generates thedomain transfinite-element the continuity conditions between materials through the natural

matrix equation boundary conditions in the variational principle. Impedance
boundary conditions may be set on lossy conductors, zero tan-
(AD + W)z(s) gential electric field is set on perfect conductors, and absorbing

j L . @ boundary conditions are set on open radiating boundaries.
= o [(s — Jjwo) AN + (s — jwg)A }x(s)
W, J . . @ VI. THE MIXED-POTENTIAL INTEGRAL EQUATION
—b +w_0[(3_‘7w0) O+ (s = jwo)b } The following development is similar to that presented
(30) in [8] and [24], so here we will be brief. To apply the
s-domain method to integral equations, we write with the
Note that (30) provides the dependence on the complmixed-potential integral equation in terms of the unknown
frequencys explicitly. The matrices in (30) assume differendistribution of surface curren@(ﬂ.
forms depending on the number of ports. For simplicity, we . -
present the expressions here for a two-port. Lestand for sn x £ = —n x [32/ G4 (T,
the interior unknowns]'; stand for the unknowns on port ’
1, I'y stand for unknowns on port 27, and P, contain the +V/ Gy(7, 7V -
tangential electric fields on ports 1 and 2, respectivély, ’

=

7y - J()dd!

=

(7)dd'|. (39)
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Here,G.4 represents the dyadic Green’s function for the vector In order to carry out simulation of complete digital or
potential, G, represents the scalar Green’s function, @énid microwave circuits, it is desirable to include both the elec-
the unit vector normal to the surface at the field observatioromagnetic effects of interconnects as well as the nonlinear
point . We assume that the only objects in the problem asffects of transistors and diodes. Thus, we wish to incorporate
perfect electrical conductors, so that the sum of the incidethe reduced-order models we have derived within circuit

and scattered electric fields is normal to the surface. simulation packages such as SPICE [21], [22]. The main
Now approximatef in (39) with Rao-Wilton—-Glissen challenge in doing this is translating between the scattering
(RWG) basis function{ﬁj} [27] parameter models of high-frequency electromagnetics and the
n circuit models of SPICE.
J= Z‘]jﬁj' (40) In order to communicate with a circuit simulator, we must
=1 develop a relationship between the modal fields and certain

“voltage” and “current” signals. In circuit theory, the voltages
are typically defined as potential differences between each sig-
[K(s) +s*M(s)]J = sE (41) nal conductor and a “ground” conductor. In electromagnetics,
it is more common to work with the power-scattering maffix

Applying Galerkin’s method provides

where
- b= Sa. (44)
Kij= [ [ (7 B)Golr, 7)Y fy)da'da
545 This relates the intensities of the incident and reflected wave-
M;; :/ B - a7, 7 - Bidd da guide modes at each port. We seek a similar relationship
’ sJ5 ’ ! defined in terms of signal voltagesand currents. The desired
E, = / ﬁi (A x Ei““)da. (42) relationship is called the pseudoscattering matfix
S bp = Spap (45)

Although the matriceg( and A/ depend on frequency through N o
the Green’s functions, we assume for the moment that they \gere the quantities,, and b, are the incident and reflected
not. This allows us to make a change of varialiles s and Pseudowave intensities, defined as

u = s* to express (41) as 1/,
press (4 o= (70 221%)
(K +uM)J =b, (43) :
_ (=12 /2.
The ALPS procedure described in Section IV may then be by = 2 (Zref v Lo L)' (46)

applied to find a piecewise rational-function approximation {ere 7 . is a diagonal matrix whose entries are the reference
the frequency response over the band of interest.

impedances for each circuit port. These reference impedances
may be chosen arbitrarily; for simplicity, we demand that they
VIl. REDUCED-ORDER MODELS be positive real numbers.
Given a frequency respong&s), it is desirable to create a Formally, a voltagev,,, is the integral of the transverse
single rational-function model valid across a wide frequendlectric field £, over an open pati@,,
band. If this can be achieved, then it is a simple matter to .
transform the response of the system back to the time domain. U = —/ Ey(z, y)-dl. (47)
This time-domain representation can be simulated efficiently in Com
SPICE-like programs using recursive convolution techniqudfsthe transverse electric field can be represented in terms of
[29]. incident and reflected waveguide modes with intensitigs
To compute such a model, we use rational-function inte#nd b,,, respectively, we then have
polation, pole pruning, and least-squares fitting. The initial = R R
“unconstrained” rational-function interpolation procedure [20] By = Za"(z"(x’ y)+ Zb"(z"(x’ y)-
is carried out in order to find a model that passes through " "
the computed data at a set of equally spaced points along ferefore, in terms of modal intensities, the voltage
line s = jw. To choose the interpolant’s order, we start witfpecomes
a small number of interpolation points and then increase the _
number of points until an acceptably accurate fit is achieved m = zn:a"t"m + zn:b"tm"
between the interpolation points.
The unconstrained interpolation procedure may produdd€eret,,, = —[. &.(z, y)-dl is an integral of the modal
nonphysical, unstable right-half-plane poles. In the pol&lectric field.
pruning Stage, these p0|es are eliminated from the mode'_collecting all of the V0|tageS and wave intensities together
This makes the model stable, but introduces additiond$ vectors, the relationship becomes
approxim_ation errors. To minimize the_se errors, e_lfinal least- v ="T(a+D) (48)
squares fitting procedure is used to adjust the residlugsof
the remaining poles. Typically, we find that a maximum erravhere T = [t,,,,] iS @ square matrix4(x 4 for the structure
of about 1% is achievable with 5-30 poles. in Fig. 1) defining the transformation from mode intensities to
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SHY v +1)

ref

O

Fig. 2. A circuit interpretation of the current scattering relationship in (53).

port voltages. We need another such transformation to compute
the port currents. The form of the relationship we seek is H

i:U(a—b) (49) ch\’y
where U = [u,,] iS a matrix relating modal intensitiesFig. 3. A microstrip T-junction.
to currents. By demanding energy conservation between the
circuit and electromagnetic models, it can be shown that Microsirip Tee .
e g
v =p (50) M~ 5
| _——

whereP = [p,,,] is @ matrix whose entries are the cross-power < . -0
terms between the different waveguide modes 5l \ "

/
Prmn = / G X B - dS. (51) \ ///\ -
ports

|$e}

Sij(dB)
-

The currentr and4 can now be determined from the modal
intensitiesa and b. By rearranging (46) and solving fdr,

in terms ofa,, we can derive the desired pseudoscattering s
relation -
Sp = [R(I +S)(I —S)~*PR" + 17! "

[R(I + S)I —8)*PRT — 1] (52) -

Q 3 6 9 12 jie) 8 2 24 21 30
where R = Z*1/2T Frequency (GHz}
- ref :
Fig. 4. Scattering parameters for the T-junction of Fig. 3. Solid line: cal-
VIIl. | MPLEMENTATION OF REDUCED-ORDER culated using AWE-based fast frequency sweep. Diamonds: measured results

fi 22].
MODELS IN CIRCUIT SIMULATION fom [22]
Using (46a), we can rewrite the pseudoscattering relation-

ship b, = Spa,, in terms of voltages and currents 2) Determine the transformation matri from the modal

Yoot — i = S;(You p h _ g l2g /2 field patterns at the ports. _
v —i= 5V ti),  whereSy = 2,775, re(f53) 3) Compute the pseudoscattering matsix and then con-

vert it into a current-scattering matri%;.
We introduceY,; = Z;fl as well as the current-scattering 4) Perform reduced-order modeling on the entries of the

matrix S;. The advantage of (53) is that it lends itself to direct __ Current-scattering matrix.
implementation in a circuit simulator. An equivalent circuit 2) Write out the reduced-order models as frequency-

model for this relationship is shown in Fig. 2. The overall dependent controlled sources in the form of a circuit
procedure for producing the equivalent circuit is summarized deck for SPICE [21].
as follows.

1) Run an electromagnetic analysis on the structure of IX. NUMERICAL RESULTS

interest, using fast-sweep methods to find the modalConsider first the microstrip T-junction of [23]. The sub-
scattering-parameter matri¥ over a broad frequency strate is 0.0254-cm-thick and has a relative dielectric constant
band. of 9.9. The microstrip is 0.023-cm-wide and is assumed to
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{
T Wa
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Freq{GHz)
l_ y
- Fig. 7. Impact of the number of polesin the AWE approximation on the
x return loss for the filter of Fig. 5.

Fig. 5. A three-pole microstrip filter design.

Microstrip Low Pass Filter

Microstrip Lowpass Filter
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Fig. 8. Impact of the number of poleson the transmission coefficient for
Frequency (GHz) the filter of Fig. 5.

Fig. 6. Comparison of scattering parameters for the filter of Fig. 5. Solid
lines: AWE sweep results. Boxes: measured data. . .
not know the location of the resonance ahead of time. In

contrast, this resonance is accurately and easily computed by
. . . . .the s-domain method.
have zero thickness. The microstrip stub is 0'OSl_un'VV'éETo illustrate the efficiency of the-domain method, consider

and 0.153-cm—|ong: Th.e geometry and comput.ed pumerlqﬁ]e microstrip low-pass filter, shown in Fig. 5. The dimensions
results are shown in Figs. 3 and 4. As shown in Fig. 4, thg o filter are:l; = 65 mil, I, = 45 mil, Is = w, = 25

agreement between this theory (solid lines) and the measuggl wy = 60 mil, ws = 15 mil, and wy = 125 mil.

results (markers) obtained by Gianniet al. [23, Fig. 17(2)] The dielectric substrate has a relative dielectric constant of
is very good. Thes-domain method performs a single-matrixg 6. and is 25-mil-thick. Fig. 6 compares this solution with
LU decomposition at 16 GHz and 16 additional forward angieasured results. Again, the agreement is excellent. Even
backward substitutions (i.e., eight poles are used in th& Pagough the spectral response of this filter is relatively complex,
approximation) and accurately predicts the spectral resporssingle matrix solution at 12 GHz and 10 poles (20 additional
over the 3-30-GHz bandwidth. In contrast, with the frequenc§erward/backward substitutions) are sufficient to obtain very
domain method, one would have to solve the matrix equati@aecurate results over the wide band from 2 to 20 GHz. The
at many discrete frequencies to obtain a similar frequenayatrix size used in this example was 63 214. The CPU%ime

.reSponS.e .curV(.a. Capturing the resonar}t frequency near 18 GH‘%’hese simulations were performed on an HP 9000/720 workstation with
is not trivial with the frequency-domain method if one does4-MB RAM.
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Fig. 9. A rectangular waveguide with a ridge discontinuity. 2
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L Fig. 12. Impact of the number of polesin the AWE approximation on the
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Fig. 13. Scattering parameters for the cross-iris problem of Fig. 13. AWE
Ridge Discontinuity fast—sweep_result_s are compared with HFSS discrete sweep results. Also shown
© is the matrix residual versus frequency.
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required to perform a singléU decomposition was 107.5
min. However, it requires only 7.4 CPU min to perform a
-------- single forward/backward substitution. Thiit) decomposition
takes 14 times more CPU time than forward and backward
substitutions for this structure. Including the overhead of
setting up this problem, the total CPU time for a single
frequency point isl23.5 4+ 20 x 7.4 = 271.5 min. In contrast,
if one were to solve the problem at 20 discrete frequencies,
the total CPU time would b&0 x 123.5 = 2470 min. Thus,
the s-domain method is approximately nine times faster and
provides an analytic function for the spectral response versus
0 S el ipoed b the 20 discrete points obtained in the traditional method. With
a spectral response as complicated as the one shown in Fig. 6,
Fo 11 | Cof th ber of bolesin the AWE _ " this analytical function is much more suitable for use in a
trgr.lsmi.ssig:\p?gef(f)icier?tr;g:n thzrv(\)/a\?gg%?ge o? Fig. géi?srgxéwgv&?ln(%nareetﬂgIcrowave circuit S|.mulat|on than are the 20 discrete values
“discrete” frequency sweep results. that must often be interpolated.
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Waveguide Iris
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Sij(dB

Frequency (GHz)

Fig. 15. Effect of the center frequency on the fast-sweep approximation for
the waveguide cross-iris problem of Fig. 13.
Fig. 14. A rectangular waveguide with two cross irises.

Figs. 7 and 8 illustrate the rate of convergence of the a—r
scattering parameters in terms of the number of poles used
in the Pa@  approximation. The spectral response between 8
and 18 GHz is correctly captured with as few as five poles.
This indicates that the dominant poles that produces the peaks h
and valleys in the response are already contained in the five-
pole approximation. Additional poles improve the accuracy of
the solutions at frequencies far away from the center frequency
about the Taylor-series expansion point.
As a third example, consider the rectangular waveguide
discontinuity, shown in Fig. 9. The waveguide is 19.05-mm-
wide and 9.524-mm-high. The rectangular iris is centered with
dimensionsw = 1.016 mm, [ = 5.08 mm, andh = 7.619
mm. Fig. 10 compares the numerical scattering parameters
with measured results obtained by Mansetial. [24, Fig. 6].
Figs. 11 and 12 again demonstrate the rate of convergence in x
terms of the number of poles used in the @agproximations. rig. 16. An E-plane slot-coupled T-junction between two rectangular
With the center frequency at 13.0 GHz and five poles in theveguides.
Pack approximation, the-parameters are obtained accurately . . .
within the 10-15-GHz bandwidth. Adding poles to bring’ccurs. Although the matrix residue is often less than®6r
the reduced-order model up to ten poles produces accuratk20 dB when it is directly decomposed, it is observed that
solutions between 8-22 GHz. The latter set of results is cdfis method provides accurate scattering parameters for a large
firmed by using the Ansoft (HFSS) to perform a convention@Umber of practical structure even when the matrix residue is
“discrete” frequency sweep. as large as-20 dB. This is clearly illustrated in Fig. 13 where
The above three examples clearly demonstrate the po@d poles are used in the Fadpproximation.
and the limitations of the-domain method. It is evident that The structure in Fig. 14 has a resonance around 15 GHz.
the solution is most accurate over a limited bandwidth. THE demonstrate the robustness of the method, the problem is
range of this bandwidth depends on the number poles usgdved at several center frequencies. Fig. 13 shows a typical
in the model and on the complexity of the spectral responggatrix residue versus frequency plot for the case when the
Since the Pa&l approximation only catches dominant polegatrix is factored using ten poles at the center frequency of
and zeros, the accuracy bandwidth decreases with increasthigGHz. Fig. 15 shows that the center frequency has almost
complexity in the spectral response. the global matrix-residone effect on the spectral response even though the rational
error criterion in (11) indicates the range of validity of thdunctions representing the system are different. This is an
Pace approximation. Fig. 13 presents the matrix residue plwoportant property of thes-domain approach: one is not
for the rectangular waveguide cross-iris problem shown iequired to specify the solution frequency. Rather, one must
Fig. 14. For this example, the minimum residue is located satisfy the loose requirement that the center frequency should
the center frequency of 15 GHz where only roundoff errdre in the bandwidth of interest.
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bl Lt et N T sl Fig. 20. Comparison of ALPS results with the conventional discrete fre-

guency sweep in Strata.

Frequency {Ghz)

Fi.g. 18. Co_mputec_i fast-sweep results for the structure of Fig. 16 compared
with conventional discrete frequency sweep results from HFSS. While this discrete solution is accurate at the 21 computed

frequencies, the-domain method clearly produces a far better

. . and more complete result.
The last finite-element example is t#&plane slot coupled
. L . T The next example demonstrates the use of fast sweep tech-
T-junction in a rectangular waveguide, as shown in Fig. 16

This T-junction exhibits several sharp resonances between rjgues foran mtegral-equat.lon §olver. The problem is the IOYV-
and 18 GHz, indicating the existence of several dominal#SS filter structure, shown in Fig. 19. This was analyzed using
poles in this frequency range. Applying thelomain solution Strata, a full-wave boundary-element code with ALPS-based
procedure at a single frequency range does not capture alf@ftrequency sweep. The results of the fast sweep are com-
the resonances accurately. Thus, we employ CFH to combRfd€d with a discrete frequency sweep (X’s), shown in Fig. 20.
the Taylor-series expansions at multiple frequencies to produlé® @greement is quite good across the entire frequency band.
a single rational function for the entire bandwidth, as given in Another low-pass filter is shown in Fig. 21(a). The com-
(6). We solve the T-junction in Fig. 16 for ten derivativeuted scattering parameters were modeled with rational func-
at each of the three different frequencies at 13.2, 15.0, affens of 16-18 poles. A comparison of the sweep results with
17.2 GHz. The resulting rational function has 15 poles. Fig. t7e reduced-order model is shown in Fig. 21(b).

compares the computedparameter spectra response with the A two-port equivalent circuit model for the structure
measured results, as given by Sieverdingl. [25, Fig. 6(b)]. was then generated; this was connected to a nonlinear
The agreement between computed and measured results isegtal-oxide—semiconductor (MOS) inverter driver. The
cellent. Also shown in Fig. 18 are discrete frequency solutiotsnsmitted and reflected pulses from a transient simulation
obtained by solving the problem at 21 discrete frequenciese shown in Fig. 22.
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Near and Far End Waveforms
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@
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Comparison: Magnitude of S,
Strata™ vs. Reduced-Order Model

0.0

Voltage (V)

0.0

-20.0 |
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g
: Time (ns)
<
40.0 (b)
' T Strata Fig. 22. Transient simulation results from HSPICE analysis of the combined
-——= Reduced—OrdeJ MOS driver and reduced-order model.
!
%50 20 20 60 80 100 number of right-angle bends allowed for a certain maximum
Frequency (GHz) Crosstalk.
(b) Also shown [Fig. 24(b)] are the signal waveforms at the

Fig. 21. (a) Chebyshev third-order low-pass filter structure. (b) Comparisftear and far ends. Notice that the waveforms predict a delay
of Strata’s frequency response (computed by fast sweep) and the reduced-asdesipproximately 0.1 ns from input to output. This is consistent
model. with the relative dielectric constant (= 4, a velocity of

1.5 x 10® m/s) and the total distance traveled (about 16 mm).

The second example [Fig. 23(a)] is taken from printed
circuit-board design. It consists of two symmetrical wires
used in a differential signaling scheme; the wires make“a 90 Fast frequency-sweep methods provide a powerful tool
bend, which includes a transition from anrouting layer to for characterizing the electromagnetic behavior of structures
a y-layer through a pair of vias. There are ground plandkat are intended to operate over a broad frequency band, or
above and below the structure. We wish to investigate thhose time-domain characteristics are important. Reduced-
crosstalk between the undesired common mode (even modejer models can be generated with a computational
of propagation and the signal-carrying differential mode (odtbst, which is small compared to the field analysis at
mode). The structure was analyzed by Ansoft HFSS, usiagsingle frequency. In this paper, we have demonstrated
both a standard discrete frequency sweep and fast frequerfogw fast sweep techniques may be applied to both finite-
sweep techniques; the modealparameters were converted inteelement and integral-equation formulations of the full-wave
circuit-based parameters for even and odd modes and tldgctromagnetic-analysis problem.
fitted by reduced-order models. The point-by-point frequency For the finite-element approach, the transfinite-element for-
sweep (100 points) took 2.5 h of CPU time on a DEC Alphaulation of Maxwell's equations was coupled with AWE to
3000/800 workstation, while the fast frequency sweep to@ompute the spectral response efficiently. Speed improvements
less than 0.2 CPU h. Plots of the near- and far-end crosstafkten times or more over the traditional approach were
magnitudes are shown as a function of frequency in Fig. 23(loptained when analyzing typical microwave structures. In
In addition, we have computed the time-domain crosstatkany cases, the spectral response over a wide bandwidth
waveforms for the structure, assuming that input pulses witves accurately obtained by solving the problem at a single
0.1-ns rise times drive the even and odd modes. Plots fefquency and performing the AWE procedure. The solution is
these waveforms are given in Fig. 24(a). This informatiotypically most accurate near the center frequency of the series
could be used to create “design rules” for the maximumxpansion. However, it becomes less accurate as the frequency

X. CONCLUSIONS
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Fig. 23. (a) Three d_|men5|onal printed circuit-board structure including vias 0.0 o2 04 06 08 10
and 90 bend. (b) Simulated far-end crosstalk response between odd and Time (ns)
even modes.

(b)

Fig. 24. (a) Time-domain crosstalk waveforms at the input (near) and output
departs from the expansion point. The range of validity igr) ports. (b) Time-domain differential-signal waveforms at the near and far
problem dependent. If the frequency response of the struct6Rés:

IS requwgd over a broad band, additional solut|0n_s at dlfrerer'?"ntr:lgnitude faster than can be achieved in a field simulator. This
frequencies may be performed and then combined together® . . . I
using CFH permits the user to change the nonlinear-device characteristics

Alternatively, one may use the ALPS procedure, Whicﬁlnd resimulate without long delays.

adaptively solves at the frequency points of maximum error
u?]ing the Ldanczos r?lgr?|rithm| Wti)t|h selzcti\f/fe orthogonaliz”ation. ACKNOWLEDGMENT
The procedure is highly reliable and efficient. Typically, it . .
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test cases, excellent agreement is obtained between ALPS uan for their assistance in preparing this paper.
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